COMMON P.G. ENTRANCE TEST - 2021 (CPET-2021)

Test Booklet No.:

117461

HIGHER EDUCATION DEPARTMENT, GOVT. OF ODISHA TEST BOOKLET

Subject Code: 15

Entrance Subject : CHEMISTRY

Time Allowed: 90 Minutes

Full Marks: 70

INSTRUCTIONS TO CANDIDATES

- 1. Please do not open this Question Booklet until asked to do so.
- 2. Check the completeness of the Question Booklet immediately after opening.
- 3. Enter your Hall Ticket No. on the Test Booklet in the box provided alongside. Do not write anything else on the Test Booklet.
- 4. Fill up & darken Hall Ticket No. & Test Booklet No. in the Answer Sheet as well as fill up Test Booklet Serial No. & Answer Sheet Serial No. in the Attendance Sheet carefully. Wrongly filled up Answer Sheets are liable for rejection.
- 5. Each question has four answer options marked (A), (B), (C) & (D).
- 6. Answers are to be marked on the Answer Sheet, which is provided separately.
- 7. Choose the most appropriate answer option and darken the oval completely, corresponding to (A), (B), (C) or (D) against the relevant question number.
- 8. Use only Blue/Black Ball Point Pen to darken the oval for answering.
- 9. Please do not darken more than one oval against any question, as scanner will read such markings as wrong answer.
- 10. Each question carries equal marks. There will be no negative marking for wrong answer.
- 11. Electronic items such as calculator, mobile, etc., are not permitted inside the examination hall.
- 12. Don't leave the examination hall until the test is over and permitted by the invigilator.
- 13. The candidate is required to handover the original OMR sheet to the invigilator and take the question booklet along with the candidate's copy of OMR sheet after completion of the test.
- 14. Sheet for rough work is appended in the Test Booklet at the end.

CHEMISTRY

Serial No's of Questions	Question	Number of marks 1x70
1.	Catalytic reduction of thiophene with H ₂ /Raney Ni forms: A. n-butane B. tetrahydrothiophene C. thiophan D. 2-thienyl nickel	, At
2.	Hydrogenation of benzoyl chloride in presence of Pd on BaSO ₄ gives: A. benzyl alcohol B. benzaldehyde C. benzoic acid D. phenol	, (
 4. 	Cycloalkanes are isomeric with A. Olefins B. Alkynes C. Alkadienes D. All the above	м.
7.	A compound with molecular formula, C_7H_{16} shows optical isomerism, the compound will be A. 2,2-dimethylpentane B. 2-methylhexane C. 2, 3-dimethylpentane D. None of these	
5.	What characteristic is at best common to both <i>cis</i> -2-butene, and <i>trans</i> -2-butene?	11
	A. boiling pointB. dipole momentC. heat of hydrogenationD. product of hydrogenation	
6.	The reason of the loss of optical activity of lactic acid when OH group is changed by H, is that: A. asymmetry of the molecule is destroyed	§4

change occurs rangement is changed molecular weight 72 upon chlorination gives only one in product. The alkane is butane ethylpropane ree above reses cold aqueous alkaline KMnO ₄ solution but does itate with ammonical CuCl solution. The gas is molecular formula C ₆ H ₁₂ upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is ethyl-2-butene
rangement is changed molecular weight 72 upon chlorination gives only one in product. The alkane is butane exthylpropane ree above sees cold aqueous alkaline $KMnO_4$ solution but does itate with ammonical CuCl solution. The gas is emolecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is e-2-pentene
molecular weight 72 upon chlorination gives only one in product. The alkane is butane butane extra butane see above sees cold aqueous alkaline $KMnO_4$ solution but does situate with ammonical CuCl solution. The gas is molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2 -pentene
butane ethylpropane ree above ses cold aqueous alkaline $KMnO_4$ solution but does itate with ammonical CuCl solution. The gas is molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2 -pentene
butane ethylpropane ree above ses cold aqueous alkaline $KMnO_4$ solution but does itate with ammonical CuCl solution. The gas is molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2 -pentene
butane ethylpropane ree above ses cold aqueous alkaline $KMnO_4$ solution but does itate with ammonical CuCl solution. The gas is molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2 -pentene
ethylpropane see above sees cold aqueous alkaline $KMnO_4$ solution but does itate with ammonical CuCl solution. The gas is molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
ses cold aqueous alkaline $KMnO_4$ solution but does itate with ammonical CuCl solution. The gas is molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
ses cold aqueous alkaline KMnO $_4$ solution but does itate with ammonical CuCl solution. The gas is molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2 -pentene
molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
molecular formula C_6H_{12} upon ozonolysis gives only the does not reduce Fehling's solution. The alkene is -2-pentene
-2-pentene
-2-pentene
-2-pentene
-2-pentene
The state of the s
ethyl-2-butene diving the state of the state
am 20 A
ganic product formed in the reaction,
$H(CH_2)_8COOH + HBr \xrightarrow{peroxide} is:$
(CII.) COOII
r(CH ₂) ₈ COOH
H(CH ₂) ₈ COBr
$I_2(CH_2)_8COOH$
H(CH ₂) ₇ CHBrCOOH
C 2.3 druger short-larger
on oxidation with Cl ₂ gives A
- it a fined to morning produce of attendance with the W
(B) \
1 files million A
A May made a decided
nod monodry) to response
CI (D)
e ocoal ne givina la depote a al altra engan al d
a new market and the second that we start to write and the
ving which is the Sangers reagent?

(B) Chloro dinitro benzene

- (C) Dinitro benzene
- (D) Dibromo nitro benzene

13.

*For the reaction

$$CH_{3}I \xrightarrow{Li} A \xrightarrow{(i)} H_{2}O/H^{+}$$

What is C A

14.

Which of the following will favour elimination reaction with cyanide nucleophile? B

D) CH₃B

15.

In the following reaction, the end product is A

For the reaction

22.	Diabetes is detected by testing the urine of a patient usually with: A. Tollen's reagent B. Nessler's reagent C. Fenton's reagent	
	D. Benedict's reagent	
23.	What is the shape of CIF ₃ molecule	
	A. Plane triangle B. T-shaped C. TBP D. Tetrahedral	
24.	What is the bond order of He ₂ ⁺	
	A. 1 B. ½ C. 0 D.3/2	
25.	Which of the following compound of potassium is known as pearl ash?	
	A. K ₂ CO ₃ B. KNO ₃ C. KCl D. KMnO ₄	
26.	Among La, Sm, Gd, Yb which element will give coloured ion?	
	A. Gd ²⁺ B. Sm ³⁺ C.Gd ³⁺ D. Yb ³⁺	
27.	When boric acid is heated, finally it gives glassy mass which is due to	
	formation of	
	to the second of	
	A. HBO ₂ B. BO ₂ - C.B ₂ O ₃ D. H ₂ B ₄ O ₇	
	the All the expendent of the many of the second of the sec	
28.	Which of the following combinations cannot produce a buffer	
my,	solution?	
	A. HNO ₂ and NaNO ₂	
	B. HCN and NaCN	
,	C. HClO ₄ and NaClO ₄	
	D. NH ₃ and (NH ₄) ₂ SO ₄	
29.	The solubility product of a sparingly soluble salt AB at room temperature is 1.21 x 10 ⁻⁶ M ² . Its molar solubility is	
	A. 1.21 x 10 ⁻⁶ M	
	B. 1.1 x 10 ⁻⁴ M	
	C. 1.1 x 10 ⁻³ M	
	D. 1.1 x 10 ⁻² M	
30.	Which of the following is used as an indicator in the titration of a weak acid and a strong base?	
	A. Bromothymol blue (6 to 7.5)	

- Methyl orange (3 to 4) В.
- C. Methyl red (5 to 6)
- D. Phenolphthalein (8 to 9.6)
- In an acid-base titration, 0.1 M HCl solution was added to the NaOH 31. solution of unknown strength. Which of the following correctly shows the change of pH of the titration mixture in this experiment?

- A. A
- B. B
- C. C
- D. D
- 32. Based on the first law of thermodynamics, which one of the following is correct?
 - A. For an isothermal process, q = +w
 - B. For an isochoric process, $\Delta U = -q$
 - C. For an adiabatic process, $\Delta U = -w$
 - D. For a cyclic process, q = -w
- 33. Two moles of an ideal gas expand spontaneously into vacuum. The work done is
 - A. 2 J
 - B. Infinity
 - C. Zero
 - D. None of these
 - 34. The heat change at constant volume, q_v , is equal to
 - A. ΔU
 - Β. ΔΗ
 - $C. \Delta G$
 - D. RT
- The species which by definition has ZERO standard molar enthalpy of 35 formation at 298 K is
 - A. $Br_{2(g)}$
 - B. $Cl_{2(g)}$

	C. H ₂ O _(g) D. CH _{4(g)}	
36.	Which of the following factor affects the heat of reaction based on Kirchhoff equation?	
	A. Molecularity B. Temperature C. Pressure	işa.
	D. Volume	
37.	C-O stretching frequency for tertiary alcohol is A. 1100cm ⁻¹ B. 1230cm ⁻¹ C. 1050cm ⁻¹ D.1150cm ⁻¹	77 %
38.	The molecule which is IR inactive but Raman active is A. HCl B. N ₂ C. SO ₂ D. Protein	
39.	The rotational spectrum of a rigid diatomic molecule consists of equally spaced lines with spacing equal to (where B= rotational constant) A. B. B. 2B C. 4B D. B/2	
40.	Acetone shows three important peaks in mass spectrum at m/e = 58, 43, 15. Which peak is most intense A. 58 B. 43 C. 15 D.None	
41.	The nitrogen rule states that in case of a compound has an odd numbered molecular ion, the compound has an number of nitrogens	
	A. Odd B. even C.zero D. (m+1) number	
42.	In which compound molecular ion peak is not visible. A. Alkane B. Amine C. Alcohol D. Aromatic compound	
43.	How many numbers of double bonds present in the compound C ₈ H ₈ O ₃ . A. 3 B. 1 C. 4 D. 5	
44.	Mass spectra of a compound shows following peaks at m/e 86, 71, 57, 43. The compound Is A. Butane B. 2- methyl butane C. n-hexane D.2-methyl pentane	
45.	Arrange the following compounds in the increasing order of carbonyl frequency: A. $p-methoxy$ acetophenone $<$ Acetophenone $<$ $p-$ nitro acetophenone B. $p-$ nitro acetophenone $<$ $p-$ methoxy acetophenone $<$	rja

Acetophenone

- C. Acetophenone acetophenone <math>methoxy acetophenone
- D. Acetophenone acetophenone <math>nitro acetophenone

What is the difference in energies of protons oriented with and against a magnetic field of strength 1.5 T?

A. 5.05 x 10⁻²⁷ J

- B. 4.231 x 10⁻²⁶ J
- C. $63.8 \times 10^{-25} \text{ J}$
- D. $63.85 \times 10^{-27} \text{ J}$

A compound with molecular formula C₂H₂BrCl exhibit two doublets (J= 16 Hz) in its PMR spectra. Predict the structure 47.

(B)

46.

(C)

(D)
$$H$$
 $C = C$ Br

Freundlich adsorption isotherm is 48.

A.
$$\frac{x}{m} = KP^{\gamma_n}$$

B.
$$\frac{x}{m} = mKP^{\gamma_n}$$

C.
$$\frac{x}{m} = KP^{-n}$$

D. all of these makes makes and a

Which of the following compound corresponds to vant Hoff factor to 49. be equal to 2 in dilute solution?

> D.C₆H₁₂O₆ A. KCl B. BaCl₂ C. K₂SO₄

- The number of atoms per unit cell in a simple cubic, f.c.c and b.c.c are respectively
- A. 1,4,2 B. 4,1,2 C. 2,4,1 D. 4,8,2
- 51. Which of the following relationships is/are not true
 - A. Most probable velocity $= \sqrt{\frac{2RT}{M}}$
 - B. $PV = \frac{3}{2}kT$ who improve the restriction
 - $C: TZ = \frac{PV}{nRT} \text{ and an addition of addition of a point addition of a distance of a distance$
 - D. Average kinetic energy= $\frac{1}{2}kT$
 - 52. Two moles of ideal gas expands spontaneously into vacuum. The work done is
 - A. 2J B. infinite C. zero D.none of these
- 53. For mean free path (λ) is

(A)
$$\lambda \propto \frac{P}{T}$$
 (B) $\lambda \propto \frac{T}{P}$ (C) $\lambda = \frac{v}{T}$ (D) $\lambda \propto \frac{P}{\theta}$

- 54. The transport number of H⁺ is
 - A. 0.230 B. 0.430 C. 0.630 D. 0.830
- Third law of thermodynamics provides a method to evaluate which property?
 - A. Absolute Energy
 - B. Absolute Enthalpy
 - C. Absolute Entropy
 - D. Absolute Free Energy
- 56. One mole of which of the following has the highest entropy?
 - A. Liquid Nitrogen A. Liquid Nitrogen A. Liquid Nitrogen
 - ntlam all hB. Hydrogen Gas to an as us an woll of an to dard and
 - C. Mercury
 - D. Diamond
- Which of the following is true for the reaction? $H_2O(1) \leftrightarrow H_2O(g)$ at 100° C and 1 atm pressure?

11

	Λ . $\Delta S = 0$	
1	we shall be B. $\Delta H = T \Delta S$ if we fill the line right of the extreme at 1	
	C. $\Delta H = \Delta U$	
	D. $\Delta H = 0$	
58	The temperature of the system decreases in an:	
	A. Adiabatic Compression	
	B. Isothermal Expansion	
	C. Isothermal Compression	
	D. Adiabatic Expansion	
59.	A metal 'M' is in the first group of the Periodic Table. What will be the formula of its oxide?	
	A. MO B. M ₂ O C. M ₂ O ₃ o in visuoenanoga shnaqee etg mata ve a tout on t D. MO ₂	
60.	Which of the following set of elements is written in order of their increasing metallic character?	58
	A. Na, Li, K B. C, O, N (1) (2) (2) (3) (4) C. Mg, Al, Si D. Be, Mg, Ca	
	Lattice energy is: WER G OERO O UER OH OFF A	
61.	A. Directly proportional to inter-ionic distance B. Directly proportional to Born exponent C. Inversely proportional to inter-ionic distance D. Inversely proportional to Avogadro's number	
62.	The correct order of dipole moment is:	
	A. CH ₄ < NF ₃ < NH ₃ < H ₂ O B. NF ₃ < CH ₄ < NH ₃ < H ₂ O C. NH ₃ < NF ₃ < CH ₄ < H ₂ O D. H ₂ O < NH ₃ < NF ₃ < CH ₄ magazini blapid	
63.	In which of the following cases the covalent character and the melting point order are the same?	
	A. BeCl ₂ , CaCl ₂ , BaCl ₂ B. NaCl, MgCl ₂ , AlCl ₃ C. MgBr ₂ , SrBr ₂ , BaBr ₂ D. NaF, MgF ₂ , AlF ₃	.6

64.	Which of the following has T-shape?	1
	A. I ₃ . B. NH ₂ . C. BeF ₂ D. H ₂ O	
65.	PF ₃ is very reactive because:	
	 A. Bond angle FPF is 90° B. Axial bonds are longer than equatorial bonds C. It is SP³d hybridised D. None of these 	
66.	The molality of pure water is	
	A. 100M B. 55.6 M C. 50 M D. 18M	
67.	Which of the following 0.1 M aqueous solution will have the lowest	
	freezing point?	
	A. K ₂ SO ₄ B. NaCl C.urea D. Glucose	
68.	Among the following species, the one having the highest bond strength	
	is	
	A. O_2 B. O_2^+ C. O_2^- D. O_2^{2-}	
69.	Halide ions are reducing agent. Which one of the following is their	
,	correct sequence in the increasing order of their reducing power?	
	A. Cl > F > Br > I	
	B. I>Br>Cl>F	
	C. F>Cl>Br>I	
	D. Br>Cl>F>l	
70.	Which one of the following is a pseudohalide?	
	A. CN B. ICl C. IF ₅ D. I ₃	
		•
	13 valeimei P.T	

ROUGH WORK

W-15-Chemistry