COMMON P.G. ENTRANCE TEST - 2021 (CPET-2021)

152142

Test Booklet No.:

HIGHER EDUCATION DEPARTMENT, GOVT. OF ODISHA TEST BOOKLET

Subject Code: 33 Entrance Subject: MATHEMATICS

Time Allowed: 90 Minutes

Full Marks: 70

INSTRUCTIONS TO CANDIDATES

- 1. Please do not open this Question Booklet until asked to do so.
- 2. Check the completeness of the Question Booklet immediately after opening.
- 3. Enter your Hall Ticket No. on the Test Booklet in the box provided alongside. Do not write anything else on the Test Booklet.
- 4. Fill up & darken Hall Ticket No. & Test Booklet No. in the Answer Sheet as well as fill up Test Booklet Serial No. & Answer Sheet Serial No. in the Attendance Sheet carefully. Wrongly filled up Answer Sheets are liable for rejection.
- 5. Each question has four answer options marked (A), (B), (C) & (D).
- 6. Answers are to be marked on the Answer Sheet, which is provided separately.
- 7. Choose the most appropriate answer option and darken the oval completely, corresponding to (A), (B), (C) or (D) against the relevant question number.
- 8. Use only Blue/Black Ball Point Pen to darken the oval for answering.
- 9. Please do not darken more than one oval against any question, as scanner will read such markings as wrong answer.
- 10. Each question carries equal marks. There will be no negative marking for wrong answer.
- 11. Electronic items such as calculator, mobile, etc., are not permitted inside the examination hall.
- 12. Don't leave the examination hall until the test is over and permitted by the invigilator.
- 13. The candidate is required to handover the original OMR sheet to the invigilator and take the question booklet along with the candidate's copy of OMR sheet after completion of the test.
- 14. Sheet for rough work is appended in the Test Booklet at the end.

S

- 1. If $A = \{0.2, 0.22, 0.222, ...\}$ then
 - (A) $\sup A = \frac{3}{9}$

(B) $\sup \Lambda = \frac{2}{9}$

(C) $\sup A = \frac{4}{9}$

- $\lim_{n \to \infty} \sqrt[n]{l^2 + 2^2 + 3^2 + \dots + n^2} \text{ equals to}$ 2.
 - (A) -1

(B)

of shape 1 1 1 - "

- Let $\{a_n\}$ be a sequence of real numbers. Suppose that $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = q$. Which of the 3. following is true?
 - (A) If q < 1 then $\lim_{n \to \infty} a_n > 0$
 - (B) If q > 1 then $\lim_{n \to \infty} |a_n| = \infty$
 - (C) If q < 1 then $\lim_{n \to \infty} a_n < 0$
 - If q > 1 then $\lim_{n \to \infty} |a_n| > \infty$ (D)
- $\lim_{n\to\infty} (\sqrt{n}-1)^n$ equals to 4.

 - (A) 1 (B) 0
- (C) $\frac{1}{2}$ (D) ∞

- If $S = \left\{ \frac{(n+1)^2}{2^2} : n \in \mathbb{N} \right\}$ then 5.
 - (A) Least upper bound of S=2
 - Least upper bound of $S = \frac{1}{2}$
 - (C) Least upper bound of $S = \frac{9}{4}$
 - (D) Least upper bound of S = $\frac{25}{16}$

- $\lim_{n\to\infty} \prod_{k=3}^{n} \frac{k^3 1}{k^3 + 1}$ equals to 6.
 - (A) $\frac{4}{3}$
- (B) $\frac{2}{3}$
- (C) $\frac{5}{3}$

(D) $\frac{7}{3}$

- Whic of the following is not true? 7.
 - Every sequence of real numbers has a monotone sub-sequence.
 - Every bounded sequence of real numbers has a convergent sub-sequence.
 - Every bounded sequence is convergent.
 - Every convergent sequence is cauchy sequence.
- $\lim_{n \to \infty} \frac{1}{n} (1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \dots + n^{\frac{1}{n}}) \text{ equals to}$ 8.
 - (A) 1

(B) 0

- $^{\circ}(C)$ e (D) $\frac{1}{2}$
- Assume that there is an integer n_0 such that $n \ge n_0$ the inequality $a_n \le b_n$ holds. 9. Which of the following is true?
 - (A) $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$

(B) $\lim_{n \to \infty} a_n \ge \lim_{n \to \infty} b_n$

(C) $\lim_{n \to \infty} a_n \ge \overline{\lim_{n \to \infty}} b_n$

- $\lim_{n\to\infty} 2^{-n} n^2$ equals to 10.
 - (A) 0

(B)

(C) 2

(D) 2 1 termi 1 jeu Ameri (d)

11.	The infinite series	$\sum_{n=0}^{\infty} (\frac{1}{2})^n \text{ equals to}$
	(A) 2	(B) $\frac{1}{2}$

- For what value of p, the infinite series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)p}$ is convergent. 12.
 - (A) $p \le 1$
- (B) p > 1
- (C) 0

(C) 0

(D) $p \le 0$

(D) None

- $\lim_{x \to 0} x \left| \frac{1}{x} \right| \text{ equals to}$
 - (A) 0

- Let $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ then f(x) is continuous at
 - (A) x = 0
- (B) x = 1 (C) $x = \pi$ (D) $x = \infty$

- For what value of r, $\lim_{n\to\infty} r^n = 0$. 15.
 - (A) r > 1
- (B) $0 \le r < 1$ (C) 2 < r < 3 (D) |r| > |

- The point of maxima of $f(x) = x^2 e^{-x}$, x > 0 is 16.
 - $(A) \quad 0$

(C) -1

- (D) 1
- The points of continuity of f defined by $f(x) = \begin{cases} x^2 1, & \text{if } x \text{ is irrational} \\ 0, & \text{if } x \text{ is rational.} \end{cases}$ 17.
- (B) $1, \frac{1}{2}$ (C) $-\frac{1}{2}, \frac{1}{2}$ (D) -1, 1

Let $f(x) = \begin{cases} x \tan^{-1} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$

Then the left hand derivative and right hand derivative of f(x) at x = 0 are

- (A) π , $-\pi$
- (B) $-\frac{\pi}{3}, \frac{\pi}{3}$ (C) $\frac{\pi}{2}, -\frac{\pi}{2}$

19.	The value of $\iint_{1}^{26} \frac{x}{y^2} dx$	dy is			m 1-1-7	
		(B)	1/8	(C)	$\frac{1}{6}$	(D) $\frac{1}{7}$
20.	The value of $\iiint_{1}^{2} 24x^{2}$	y ³ z dz	dy dx equals to)		
	(A) 6	(B)	1	(C)	7	(D) 8
21.	What is the harmonic	conju	ugate of u(x, y)	= 2x -x	$x^3 + 3xy^2$?	
	(A) $2y - 3x^2y - y^3 + c$			(B)	$2y - 3x^2y + y^3 + c$	
	(C) $2y + 3x^2y + y^3 + c$		in authorities a	(D)	$-2y + 3x^2y - y^3 +$	c whole
22.	The real part of (1+i)8	+ (1	- i)8 is			1 2 - (A)
	(A) 2 ⁴	(B)	2^6	(C)	25	(D) 2 ⁸
23.	The value of $\oint_{c} \frac{e^{z}}{z^{2}-9} dz$	z whe	re C: $ z-2 =2$, is	170		
	(A) ₁ 0 (1)	(B)	$\frac{\pi}{3}e^3$	(C)	$\frac{1}{3} i \pi e^3$	(D) $\frac{\pi}{3}e^2$
24.	If $Z = e^{i\frac{2\pi}{n}}$ for an integer	ern≥	2 then the valu	ue of 1	$+ z + z^2 + + z^{n-1}$	equals to
	(A) 1	(B)	-1	(C)	0	(D) $\frac{1}{2}$
		1	(5)	1		$\frac{D}{2}$
25.	The real and imaginar	y par	t of $\sin z$, $z \in \mathbb{C}$	equals	to	
					H = .	

(A) cos y sin hx and sin y cos hx

sinx cos hy and cosx sin hy (B)

(C) – sinx coshy and cosx cos hy

(D) sinx cos hx and cosy sin hy

26.	Whi	ch of the following	; is not	a vector spa	ce?	e followine, ten	32. Which of th
				$\mathbb C$ over $\mathbb Q$			(D) \mathbb{C} over \mathbb{C}
		("y,,'z) = (y,		(2	3 -2)	(X 2 + 2) =	
27.	The	characteristic pol	ynomia 7		$\begin{bmatrix} 5 & 4 \\ 0 & -1 \end{bmatrix}$	equals to	(C+ T (x, F
	(A)	$\lambda^3 - 6\lambda^2 - 5\lambda + 12$				$\lambda^3 - 6\lambda^2 + 5\lambda - 1$	
	(C)	$\lambda^3 + 6\lambda^2 - 5\lambda - 12$	A la Ir		min(D)	$\lambda^3 - 6\lambda^2 - 5\lambda - 1$	2 = F to 1
28.	Whi	ch of the following	g is a sı	ubspace of $\mathbb R$	³ over ℝ	? (1-)	
	(A)	$W_1 = \{(a, b, c) \in \mathbb{I}$	$\mathbb{R}^3: \mathbf{a}^2$	$+b^2+c^2 \leq 1$	(B)	$W_2 = \{(a, b, c) \in A_1, c \in A_2, c \in $	$\mathbb{R}^3: a \ge 0\}$
	(C)	$W_3 = \{(a, b, c) \in \mathbb{I}$	R³:a+	-b+c=0	(D) a	$W_4 = \{(a, b, c) \in$	\mathbb{R}^3 : a, b, c \in Q}
29.	For	which value of K	ı will t	he vector u =	: (1, −2, l	k) in \mathbb{R}^3 be a lin	near combinatin of
	the v	vectors $V = (3, 0, -1)$	-2) and	$\omega = (2, -1, -1)$	5)?		1)
	(A)	$K_1 = 8$	(B)	$K_1 = -8$	(C)	$K_1 = -7$	(D) $K_1 = -9$
30.	The	dimension of the	subspa	ce {(a, b, c) ∈	R ³ : c =	$\{3a\}$ of \mathbb{R}^3 over \mathbb{R}^3	R is
	(A)	1 The state of the		2 3 1 E	(C)	2	(D) None
01	T 4	A					35. The central
31.		A and B be arbitra wing is true?	ary ma	trices for whi	ch the p	roduct AB is def	ined. Which of the

(A) $\operatorname{rank}(AB) \ge \operatorname{rank}(B)$

(D) $\operatorname{rank}(AB) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$

(B) $\operatorname{rank}(AB) \ge \operatorname{rank}(A)$

32. Which of the following transformations from \mathbb{R}^2 over \mathbb{R} to \mathbb{R}^2 over \mathbb{R} is a linear transformation?

(A)
$$T(x, y) = (x + y, x)$$

(B)
$$T(x, y) = (x^2, y^2)$$

(C)
$$T(x, y) = (2x - y, x^2)$$

(D)
$$T(x, y) = (x + 1, y+1)$$

33. Let $A = \begin{pmatrix} 4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3 \end{pmatrix}$ Then the minimal polynomial of A is

(A)
$$(t-2)(t-1)$$

(B)
$$(t-2)(t-1)^2$$

(C)
$$(t-2)^2(t-1)$$

- (D) None.
- 34. The system of equations x + 2y 2z = -1, 3x y + 2z = 7, 5x + 3y 4z = 2 has
 - (A) Unique solution

- (B) No solution
- (C) Infinitely many solutions
- (D) Three solutions.
- 35. Let B = $\begin{pmatrix} 1 & 3 \\ 0 & -2 \\ 5 & -1 \\ -2 & 3 \end{pmatrix}$ Then the rank (B) is
 - (A) 0

(B) 2

(C) 1

- (D) None
- 36. The determinant of the matrix $C = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 0 & -3 & 7 & -8 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 4 \end{pmatrix}$ is
 - (A) 0

- (B) -26
- (C) -120
- (D) -14
- 37. The integrating factor of the differential equation $(2x \log x xy) dy + 2y dx = 0$ is
 - $(A) \quad \frac{1}{x^2}$

- (B) x²
- (C) $\frac{1}{x}$
- (D) $\frac{1}{xy}$

- The particular integral of $y'' 6y' + 9y = 6e^{2x}$ is to see that the second of th 38.
 - (A) $3x^2 e^{3x}$
- (B) $\frac{x^2}{2}e^{3x}$
- (C) $3x e^{3x}$
- (D) $\frac{x^2}{2}e^{3x}$

- 39. The differential equation y''' - 8y = 0 has the solution
 - (A) $y = c_1 e^{-x} + e^{3x} (c_2 \cos \sqrt{2}x + c_3 \sin \sqrt{2}x)$
 - (B) $y = c_1 e^{2x} + e^{-x} (c_2 \cos \sqrt{3}x + c_2 \sin \sqrt{3}x)$
 - (C) $y = c_1 e^{3x} + e^{2x} (c_2 \cos x + c_2 \sin x)$
 - (D) None.
- 40. The Wronskian of the set $\{\sin x, \cos x\}$ is
 - (A) -1

- (B) $0^{-1/2}$ now $(C) = 1^{-1/2}$ done quoting $(D) 2^{-1/2}$
- The partial differential equation $y \frac{\partial^2 u}{\partial x^2} + x \frac{\partial^2 u}{\partial y^2} = 0$ is hyperbolic in 41.
 - (A) the second and fourth quadrants
- (B) the first and second quadrants
- (C) the second and third quadrants
- the first and third quadrants
- 12. The PDE $\frac{\partial^2 z}{\partial x \partial y} = xy^2$ has the solution 42.
 - (A) $z = \frac{x^2y^3}{6} + F(y) + G(x)$
 - (B) $z = \frac{x^2}{6} + F(y) + G(y)$
 - (C) $z = \frac{xy^3}{6} + F(y)$
- (D) $z = \frac{x^3y^2}{6} + F(y) + G(x)$
- The subset {1, -1, i, -i} of complex numbers forms a group with respect to 43.
 - (A) addition
- subtraction (B)
- Multiplication (C)
- (D) division

44.	The nun	nber of general	ors o	01 22 ₂₀ 18			
	(A) 06		(B)	07	(C)	08	(D) 09
45.	How ma	ny subgroups	does	Z ₂₀ have?			
20.							39. The otherwise of
	(A) 5		(B)	6	(C)	7	(D) o
				(1)			(A) year consequences
46.	The nur	nber of elemen	ts of				
							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(A) 2		(B)	3	(C)		(D) 5
					(X n/3 = -	+ (***) (are respectively m and n.
47.	If H is a	a subgroup of f	inite	group G and	d order of	H and G	are respectively m and n,
	then						(D) Mone,
					(3)	V	(D) None
	(A) m	n	(B)	n m	(C)	mXn	(D) None
48.	If G is a	group such th	nat a	²=e, ∀a∈G, t	hen G is		1- (A)
	(A) Ab	pelian group	láų s	$+ x \frac{\partial^2 u}{\partial y^2} = 0$	$\frac{g^26}{2\chi 6}$ (B)	Non al	oelian group
	(C) Ri	na			(D)) Field	(A) the second and
49.	If H is a	a subgroup of C	G, th	en H is norm	nal in G is	f .up brids	(" the second and
	(A) H	is a subgroup	of in	dex 2 in G	(B)) H is a	subgroup of index 3 in G
	(11)	10 a baogroup			nosation s		42. The PDE OF = x
	(C) H	is a subgroup	of in	dex 4 in G	(D) None	of the above.
		jyhtelyi -		(1) (1)	7/U ia a a		roun when
50.	If H is	a subgroup of	a gro	up G, tnen G	J/II IS a q	uonen g	roup when
	(A) H	is not a norma	al sul	ogroup	(B) Hisa	normal subgroup of G
	(C) H	is not abelian	of G		human vida (D) None	of the above.
					huboritic		northble (A)

W-33-Mathematics

- If G is a group, then for all a, b \in G dat t will an analy to be sold and to b 51.
 - (A) $(ab)^{-1} = a^{-1}b^{-1}$ (B) $(ab)^{-1} = b^{-1}.a^{-1}$ (C) $(ab)^{-1} = ab$

- (D) $(ab)^{-1} = ba$
- If H_1 and H_2 are two subgroups of G, then which of the following is a subgroup of 52.
 - (A) $H_1 \cap H_2$
- (B) $H_1 \cup H_2$
- (C) H_1H_2
- (D) None.
- Order of convergence Newton Raphson method is 53.
 - (A) 1.618
- (B)

- If $f(x) = \frac{1}{x}$ then the divided difference $f[x_0, x_1, x_2]$ is 54.
 - (A) $\frac{1}{x_0 x_1 x_2}$ (B) $\frac{-1}{x_0 x_1 x_2}$ (C) $\frac{x_2 x_0}{x_0 x_1 x_2}$ (D) None.

- Given that f(0) = 1, f(1) = 3, f(3) = 55. The quadratic lagrange polynomial is 55.
 - (A) $8x^2 6x 1$
- (B) $8x^2 6x + 1$
- (C) $-8x^2 + 6x 1$ (D) $8x^2 + 6x + 1$
- The Newton Raphson scheme for finding the smallest positive root of the equation 56.

$$f(x) = x^3 - 5x + 1 = 0$$
 is

- (A) $x_{k+1} = \frac{2x_k^3 1}{3x_k^2 5}$ (B) $x_{k+1} = \frac{3x_k^3 1}{2x_k^2 5}$ (C) $x_{k+1} = \frac{2x_k^2 1}{3x_k^3 5}$ (D) None.

57. Consider the Linear Programming Problem

Maximiz $Z = x_1 + x_2$

Subject to $x_1 - 2x_2 \le 10$

$$x_2-2x_1\leq 10$$

$$x_1, x_2 \ge 0$$

then,

- (A) The LPP admits an optimal solution
- (B) The LPP is unbounded
- (C) The LPP admits no feasible solution
- (D) The LPP admits unique feasible solution

58. Consider the LPP

Minimize $Z = x_1 + x_2$

Subject to $2x_1 + x_2 \ge 4$

$$x_1, x_2 \ge 0$$

then

(A)
$$x_1 = \frac{21}{13}, x_2 = \frac{10}{13}$$

(B)
$$x_1 = \frac{10}{13}, x_2 = \frac{21}{13}$$

(C)
$$x_1 = \frac{20}{13}, x_2 = \frac{5}{13}$$

59.	Which of the following is true?	1 1-11 2		Joseph Co.	official support	our Koul	ea.
-----	---------------------------------	----------	--	------------	------------------	----------	-----

- (A) If primal has a feasible solution then its dual will also have a feasible solution.
- (B) If primal has no feasible solution then its dual will have no feasible solution.
- (C) If both, primal and dual, have feasible solution, then both will have bounded optimal solution.
- (D) If primal has no feasible solution, then its dual will have an unbounded solution.

60. In linear Programming problem

- (A) Objective function, constraints, and variables are all linear.
- (B) Only objective function to be linear.
- (C) Only constraints are to be linear.
- (D) Only variables are to be linear.

61. If A and B are independent events, then

(A) P(A/B) = P(A). P(B)

(B) P(A/B) = P(B)

(C) P(A/B) = P(A)

(D) None of these.

62. If A and B are mutually exclusive events, then

(A) $P(A \cap B) = 1$

(B) $P(A \cap B) = 0$

(C) P(A) = P(B)

(D) $P(A \cap B) = P(A) P(B)$

Let X be a continuous random variable and f be a probability density function of X. 63. Then which of the following is true?

(A)
$$f(x) \le 0, -\infty < x < \infty$$

(B)
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

(C)
$$P(x \le x) \ne \int_{-\infty}^{x} f(x) dx$$

64. The simultaneous limit

$$\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2 + y^6}$$

- (B) 0 (C) does not exist
- (D) None

65. Let
$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

Then $\int_{xv} (0,0)$ is equal to

(A) -1

 $(B) \quad 0$

- If a | b and a | c, then 66.
 - (A) a | bc
- (B) c a
- (C) a b+c
- (D) b|a
- If a positive integer n is divided by 5, the remainder is 3. Which of the number below 67. yields a remainder of 0 when it is divided by 5?
 - (A) n + 3
- (B) n + 2
- (C) n-1
- (D) n + 1

- 68. The asymptotes parallel to co-ordinate axes of the curve $4x^2 + 9y^2 = x^2y^2$ are
 - (A) x = 3, x = -3, y = 2, y = -2
 - (B) x = 2, x = -2, y = 3, y = -3
 - (C) $x = \frac{1}{3}, -\frac{1}{3}, y = -\frac{1}{2}, y = \frac{1}{2}$
 - (D) None
- 69. In the Taylor series expansion of $f(x) = \frac{x-1}{x+1}$ about the point x = 0, the coefficient of x^2 is
 - (A) 0

(B) 2

(C) -2

- (D) -1
- 70. Let $f: A \to B$ be a map and X, Y be the subsets of A. Then which of the following is true?
 - (A) $f(X \cup Y) \neq f(x) \cup f(y)$
 - (B) $f(X \cap Y) \supseteq f(x) \cap f(y)$
 - (C) $f(X \cup Y) = f(x) \cup f(y)$
 - (D) None of the above.