COMMON P.G. ENTRANCE TEST - 2021 (CPET-2021)

Test Booklet No.:

166530

HIGHER EDUCATION DEPARTMENT, GOVT. OF ODISHA TEST BOOKLET

Subject Code: 37

Entrance Subject : PHYSICS

Time Allowed: 90 Minutes

Full Marks: 70

INSTRUCTIONS TO CANDIDATES

- 1. Please do not open this Question Booklet until asked to do so.
- 2. Check the completeness of the Question Booklet immediately after opening.
- 3. Enter your Hall Ticket No. on the Test Booklet in the box provided alongside. Do not write anything else on the Test Booklet.
- 4. Fill up & darken Hall Ticket No. & Test Booklet No. in the Answer Sheet as well as fill up Test Booklet Serial No. & Answer Sheet Serial No. in the Attendance Sheet carefully. Wrongly filled up Answer Sheets are liable for rejection.
- 5. Each question has four answer options marked (A), (B), (C) & (D).
- 6. Answers are to be marked on the Answer Sheet, which is provided separately.
- 7. Choose the most appropriate answer option and darken the oval completely, corresponding to (A), (B), (C) or (D) against the relevant question number.
- 8. Use only Blue/Black Ball Point Pen to darken the oval for answering.
- 9. Please do not darken more than one oval against any question, as scanner will read such markings as wrong answer.
- 10. Each question carries equal marks. There will be no negative marking for wrong answer.
- 11. Electronic items such as calculator, mobile, etc., are not permitted inside the examination hall.
- 12. Don't leave the examination hall until the test is over and permitted by the invigilator.
- 13. The candidate is required to handover the original OMR sheet to the invigilator and take the question booklet along with the candidate's copy of OMR sheet after completion of the test.
- 14. Sheet for rough work is appended in the Test Booklet at the end.

	A hea	ted body emits radiation which has maximum intensity near the material is 0.5. If the absolute temperature of the body is doubted to be a solute temperature of the body is doubted to be a solute temperature.	alad	ine emissivity
	(a)	The maximum intensity of radiation will be near the frequen		
	(b)	The maximum intensity of radiation will be near the frequen	$f_0/2$	
	(c)	The total energy emitted will increase by a factor of 12		
	(d)	The total energy emitted will increase by a factor of 8.		(9)
2.		eal refrigerator has a freezer at a temperature of -12° C. The coe is 5. The temperature of the air (to which the heat ejected) is		
	(a)	50°C		(s)
	(b)	45.2°C		
	(c)	40.2°C	£ n	(5)
	(d)	37.5°C	8 4	
3.	Let C	, and C_v Denote the molar specific heat capacities of an ide	eal gas at constan	pressure and
		ne, respectively. Which of the following is a universal constant		n 3 41 - 8
	(a)	$\frac{c_p}{c_v}$.		
	(b)	C_pC_v	$\frac{1}{2}K_{\mathfrak{B}}\Gamma$	
	(c)	$C_p - C_v$	$K_{E}\Gamma$	ıd.
	(d)	$C_p + C_v$	+ Kg T .	(9)
4.	A ho	t liquid is kept in a big room. The logarithm of the numerous between the liquid and room is plotted against time. The	erical value of the	e temperature
	(a)	A straight line		
	(b)	A circular arc		(do.)
	(c)	A parabola		(41)
	(0)	A parabola		
	(d)	An ellipse		
5.	(d) An id	An ellipse eal heat engine operates between two temperatures 600 K a	nd 900 K. What i	s the engine's
5.	(d) An id efficie	An ellipse	nd 900 K. What i	s the engine's
5.	(d) An id efficie	An ellipse eal heat engine operates between two temperatures 600 K a ency?	nd 900 K. What i	s the engine's
5.	(d) An id efficie	An ellipse eal heat engine operates between two temperatures 600 K a ency?	nd 900 K. What i	s the engine's
5.	(d) An id efficient (a) (b)	An ellipse eal heat engine operates between two temperatures 600 K a ency? 50%	nd 900 K. What i	s the engine's

6.	An id	eal gas heat engine r temperature. The	operates between 227 °C and 127 °C. It absorbs 8.0×10^4 amount of heat converted into work is:	Cal of hea	at at a
	(a)	6.4×10^4 cal	anasoval wit man and flow maximum story political at the decision and I		
	(b)	6.0×10^4 cal	the maximum mensity of radaman will be near the frequen		
	(c)	2.4×10^4 cal	The rotal energy entitled will increase by a wine of 17	(5)	
	(d)	1.6×10^4 cal.	Note that the state of the time of the state of the		
7.	The v	olume of a cell in si	ix-dimensional phase space is		
	(a)	h^3			
	(b)	h^6	45.2 C	(d)	
	(c)	h^{-3}			
	(d)	h^{-6}	The state of the s		
8.	The n	nean internal energy of temperature T is	y of one-dimensional classical harmonic oscillator in equilib	orium with	heat
	(a)	$\frac{1}{2}K_BT$	2 2	B)	
	(b)	K_BT	q^{-1} γ		
	(c)	$\frac{3}{2}K_BT$	G - G	3)	
	(d)	$3K_BT$.2+€?		
9.	If \vec{A} is so	O le auch moult	In the second to the property of the second to $\vec{\nabla} \times \vec{\nabla} \times \vec{A}$ is equal to the property of the second to the	A bot differ	4
	(a)	$ abla^4ec{A}$	Satil Idgesto A		
	(b)	$ abla^3ec{A}$	Sie inlumin A		
	(c)	$\nabla(abla imesec{A})$	the latery #		
		- 7	An ethipse	(fa)	
10.		1) is equal to	cal heat engine operates between two temperatures (600 to new)	An Micle	
10.			50%	(H)	
	(a)	$\Gamma(n-1)$	P.US	(d)	
	(b)	$n \Gamma(n-1)$	10096	101	
	(c)	$n \Gamma(n+1)$	DEE.		
	(4)	n F(m)			

11.	Find the value of $(\Gamma(7/2))/(\Gamma(1/2))$		
	(a) 3/4 of the same of the sam		

- (a)
- (b) 3/8
- (c) 15/8
- (d) none of these.

12. At the point of the singularity of an analytic function f(z), it is

- (a) analytic
- (b) not analytic
- may or may not be analytic (c)
- None of these. (d)

If F(s) is the complex Fourier transformation of f(x), then $F\{f(ax)\}$ is equal to 13.

timog kan tukin - b timog og Johann

- $\frac{1}{a}F(\frac{s}{a})$ (a)
- $a F(\frac{s}{a})$ (b)
- $\frac{2}{a^2}F(\frac{s}{a})$ there will be abounced growing at ill was y annother above set in resp. in we are not set (c)
- $\frac{1}{a^2}F(\frac{s}{a})$ (d)

Function Z^2 is: 14.

- Not analytics anywhere. (a)
- Analytic at origin only. (b)
- Analytic at everywhere. (c)
- Analytic in the upper-half plane only . (d)

Which of the following is not correct? 15.

(a)
$$H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$$

- $H_{2n+1}(0)=0$ (b)
- $H_{2n}^{'}(0)=0$ (c)
- $H_{2n+1}^{'}(0)=0$ (d)

What is the value of $x\delta'(x)$? 16.

- (a) $-\delta(x)$
- (b) $\delta(x)$
- $2\delta(x)$ (c)
- $-3\delta(x)$ (d)

17.	A cylinder is filled with non-viscous liquid of density d to height h_0 and a hole is made at a height
	h_1 From the bottom of the cylinder. The velocity of the liquid coming out of the hole is:

(a)
$$\sqrt{2gh_0}$$

(b)
$$\sqrt{2g(h_0 - h_1)}$$

(c)
$$\sqrt{gdh_1}$$

(d)
$$\sqrt{gdh_0}$$

18. For the Lagrangian $L = \frac{1}{2}\dot{q}^2 - q\dot{q} + q^2$, find p conjugate to q:

(a)
$$q + \dot{q}$$

(b)
$$q \dot{q}$$

(c)
$$\dot{q} - q$$

(d)
$$q - \dot{q}$$

19. What is the height of the Geo stationary satellite above the surface of the earth?

(a)
$$35.8 \times 10^3 Km$$

(b)
$$71 \times 10^3 Km$$

(c)
$$17.9 \times 10^9 Km$$

20. A hollow and solid Sphere of the same mass has an equal moment of about diameter. The ratio of their radii

(a)
$$\sqrt{3}$$
: $\sqrt{5}$

(d)
$$\sqrt{5}$$
: $\sqrt{3}$

21. Which of the following relation is true

(a)
$$Y = \eta(1+\sigma)$$

(b)
$$Y = 2\eta(1 + \sigma)$$

(c)
$$Y=K(1-2\sigma)$$

(d)
$$Y=2K(1-2\sigma)$$

22.	Two capillary tubes of same length I but radii r_1 and r_2 , they are fitted in parallel to the bottom of	f
	a vessel. The pressure head is P. What should be the radius r of a single tube that can replace the	
	two pipes so that the flow rate is the same as before?	

- $(a) \qquad r = r_1 + r_2$
- (b) $r^2 = r_1^2 + r_2^2$
- (c) $r^4 = r_1^4 + r_2^4$
- (d) $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2}$

23. Rainbow is an example of which phenomenon?

- (a) Refraction and scattering.
- (b) Total internal reflection only.
- (c) Dispersion and reflection
- (d) Dispersion and total internal reflection.

24. If an equiconvex lens of focal length f and power P is cut into half in thickness, what are each half's focal length and power?

- (a) Zero
- (b) f/2
- (c) f
- (d) 2f

- (a) 3:1
- (b) 3:2 and one vot ware that power that every but the beat and a state of the stat
- (c) 9:1
- (d) 6:1

26. The first diffraction minima due to single slit diffraction are at
$$\theta = 30^{\circ}$$
 for the light of wavelength $5000A^{\circ}$. The width of the slit is:

- (a) 5×10^{-5} cm
- (b) 10×10^{-5} cm
- (c) 2.5 × 10⁻⁵ cm and stationary larger than Awallah and their years are resourced
- (d) 1.25×10^5 cm

- (a) 1.5
- (b) $\sqrt{3}$
- (c) $\sqrt{2}$
- (d) 3/2

	(b)	Decreases	48 A 18 T	
	(c)	Remains the same		
	(d)	May increase or decrease	A	
29.		conducting sheet of large surface area and thickness d contains ρ . The electric field at point P inside the plate, at a distance		
	(a)	$\frac{\rho x}{\epsilon_0}$		
	(b)	$\frac{\rho x}{2\epsilon_0}$		
	(c)	2px	une movemperO	101
	(d)	$\rho x \epsilon_0$ and power P is cut late half in the Lorenze $\rho x \epsilon_0$.		
30.	A diele will	ectric slab is inserted between the plates of an isolated capac	eitor. The force bety	ween the plates
	(a)	Increase		10
	(b)	Decrease	Ì	
	(c) ha a	Remain unchanged all meathble avail avantages his-aldu	Ab Normal Vision	
	(d)		and their or single	
31.		any time constants will elapse before the power delivered bum value in an RC circuit?	by the battery drops	to half of its
	(a)	0.96		(1
	(b)	annum due to single slit diffraction are at $\theta=30^{9}$ for the lique width of the slit is:	un collection nu	
	(c)	6.9	$^{7} \times 10^{-5} \mathrm{cm}$	
	(d)	9.6	$m s^2 = 0.05$ cm	
32.		erimenter's diary reads as follows: a charged particle is project $10^{-3}T$. The acceleration of the particle is found to be $x\hat{\imath} + f(x)$?	$7.0\hat{j} \times 10^{-6} m/s^2$.	What is the
	(a)	a piece of glass at an angle of invidence on And the remised. The refractive index of the plans is 3.0	earn of high amiles	27 4 b
	(b)	4.0	1.5	
	(c)	7.0	P	
	(d)	5.0		
	(-)			

8

P.T.O.

When the separation between two charges is increased, the electric potential energy of charges:

28.

(a)

W-37-Physics

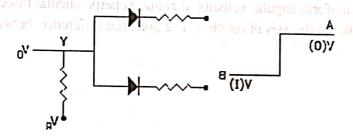
Increases

	field, i	S	V 12.00	
	(a)	Depend on the area of a loop	0-14.19	
	(b)	Depend on the shape of a loop		
	(c)	Independent of the shape of the loop	55, 1-11 × V	
	(d)	None of these.		
1.		ectron makes 3×10^5 revolutions per second in other of the circles is	a circle of radius 0.5A ⁰ . The ma	ignetic fi
	(a)	$6\times10^{-10}T$	र्क रिक्ती चर	
	(b)	$3 \times 10^{-10} T$	$S = \mu_0(\vec{s} \times \vec{n})$	
	(c)	$4 \times 10^{-10} T$	$(\Re \times \Im)\frac{1}{6^3} = 2$	
	(d)	None of these.	ni silag lartovin	u -dT
5.	The n	nagnetic susceptibility is negative for	NAND gate	/nj
	(a)	Paramagnetic materials only		(d)
	(b)	Diamagnetic material only	AMD gate	
	(c)	Ferromagnetic materials only	None of the above	
	(d)	Paramagnetic and Ferromagnetic materials		
6.	A uni	of length I rotates with small but uniform angu- form magnetic field B exists parallel to the axis nter of the rod and an end is	s of rotation. The potential differ	cular bis
	(a)	Zero	V(1) 6	
	(b)			
	(c)	$\frac{1}{2}B\omega l^2$	positive logic OR gate	(8)
	(d)	$\frac{1}{8}B\omega l^2$.	negative logic OR gate	(d)
7.	An alt	ternating current is given by $i = i_1 \sin \omega t + i_2 \cos \omega t$	osωt. The current r.m.s current is	s given
-		$\frac{l_1 + l_2}{\sqrt{2}}$	positive logic AND gate	
	(a)	A second a september of a second	The second of the Reservoir	Elle for
	(b)	$\frac{ i_1+i_2 }{\sqrt{2}}$	correct considerable device	

(c)

38. Jem If magnetic monopole existed, then which of the following Maxwell's equations will be modified?

- (a) $\overrightarrow{\nabla} \cdot \overrightarrow{D} = 0$
- (b) $\overrightarrow{\nabla} \cdot \overrightarrow{B} = 0$
- (c) $\vec{\nabla} \times \vec{E} = -\frac{d\vec{B}}{dt}$
- (d) $\vec{\nabla} \times \vec{H} = \vec{J} + \frac{d\vec{D}}{dt}$


39. The energy per unit time, per unit area transported by the electromagnetic field, is expressed as

- (a) $S = \frac{1}{\mu_0} (\vec{E} \times \vec{B})$
- (b) $S = (\vec{E} \times \vec{B})$
- (c) $S = \mu_0(\vec{E} \times \vec{B})$
- (d) $S = \frac{1}{\epsilon_0} (\vec{E} \times \vec{B})$

40. The universal gate is

- (a) NAND gate
- (b) OR gate
- (c) AND gate
- (d) None of the above

41. The circuit in the given figure is a gate. range morred the

- (a) positive logic OR gate
- (b) negative logic OR gate
- (c) negative logic AND gate
- (d) positive logic AND gate

42. A JFET is a

- (a) current-controlled device
- (b) low input resistance
- (c) voltage-controlled device
- (d) is always forward-biased

43.	The hal	f-life of a particular particle as measured in the lab is $4.0 imes 10$ lifetime is	-8s when its speed	is 0.8c,	its 🏴
	(a)	3.4×10^{-8}			
	(b)	2.4×10^{-8}			
	(c)	1.4×10^{-8}			
	(d)	None of these.			
44.	The tota	al energy of a particle is precise twice its rest energy; its speed	d is		
	(a)	0.866c			
	(b)	0.64c	Ry Mills		
	(c)	0.36c			
	(d)	0.2c			
45.	If a par	ticle of rest mass m_0 moves with speed $\frac{c}{\sqrt{2}}$ then its mass wou	ıld be		
	(a)	$\sqrt{2}m_0$			
		<u> </u>	Vock		
	(b) (c)	$\sqrt{3}$ m_0 . Here is a first time spin could interaction outer mass affect $\sqrt{5}$ m_0	niwello" oil 😉 🕹		
	(d)	$\sqrt{7}$ m_0	1.75 2		
46.		inplitude of simple harmonic oscillation reduces to 1/3 in the	first 20 seconds, t	hen in the	e first
40.	40 se	conds, its amplitude becomes:			
	(a)	1/3			
	(b)	1/9			
	(c)	1/27 Literature of the second	Appropriate many source		
	(d)	1/√3	S. It F		
47.	The von ea	vavelength of light coming from a distant galaxy is 0.5% moreth. So what is the velocity of the galaxy?	re than that comin	g from a	source
	(a)	$1.5 \times 10^6 m/s$.	18.50		
	(b)	$3 \times 10^6 m/s$.			
	(c)	3×10^8 m/s.	to to b		
		2.5 × 108 m/s. and no not individe vigroup and red income in			
48.	A 2k	eV electron enters a magnetic field of $5 \times 10^{-4} Wb/m^2$. If	the radius of the	electron	path
	is 0.3	03m, the value of e/m of the electron would be			
	(a)	4.71×10^{11} C/Kg $_{\rm eqc}$ contains a short and out to negget	bigh we elength		
	(b)	$7.71 \times 10^{11} \text{C/Kg}$	entine wavelength		
	(c)	1.74×10^{11} C/Kg			
	(d)	1.74×10^{-11} C/Kg	bear in these		
W 2	7 Dhyci				P.T.O

		the election	ron is -21.75×10^{-5}	then the
49.	If the poten	Bohr orbit of the hydrogen atom, the total energy of the electrical energy will be		
	(a)	$-43.52 \times 10^{-19} J$		
	(b)	$-21.75 \times 10^{-19}J$		
	(c)	$-10.88 \times 10^{-19} J$	and it	
	(d)	$-13.60 \times 10^{-19} J$.		
50.	If, acc is 13.	ording to the Bohr Model of hydrogen, the ionization energy 6eV, then the energy required to ionize the atom from its first	of the atom in its t excited state will	be
	(a)	6.8eV		
	(b)	3.4eV ad allow soun strited) = boogs this sort to us		
	(c)	1.7eV		
	(d)	0.85eV		
51.	On whi	ch of the following levels of hydrogen the spin-orbit interacti	ion does not affect	?
	(a)	s-level.		
भाग	(b)	p-level. To take on the to the confidence of the property of t		
	(c)	d-level		D 14
	(d)	f-level.		
52.	The La	rmor precessional frequency f of an electron of charge e in a	magnetic field is	
	(a)	$\frac{4\pi e}{mB}$		
52100	(b)	conjugation a distant galaxy is 0.5% more than that c_{89} in each only of the galaxy.		
	(c)	$\frac{mB}{4\pi e}$		
	(d)	$\frac{em}{4\pi B}$	a bank	
53.	Plano	ck's radiation law can account for the energy distribution in the	Service State of	411
	(a)	low wavelength region of the blackbody radiation spectrum	riotas auto, ap Ve Liverito alto alto	AL 11 84 1 81
	(b)	high wavelength region of the blackbody radiation spectrum	m. 11(1) + 1 F +	
	(c)	entire wavelength region of the blackbody radiation spectru	im. at a 17.0	
	(d)	None of these.	, 74 = 10° C	
				(ia)

54.	What is the kinetic energy T of a photoelectron from the K-shell of an atom, if E_k is K-i	onisation
	energy?(\dartheta is the frequency of photon)	

- (a) $T = h\vartheta + E_k$
- (b) $T = h\vartheta - E_{k}$
- $T = \sqrt{h^2 \vartheta^2 E_k^2}$ (c)
- $T = \sqrt{h^2 \vartheta^2 + E_k^2}$ (d)

55. In Compton scattering, the incident photon loses maximum energy to the electron when a photon is scattered at

- 0^{0} (a)
- 45^{0} (b)
- 90^{0} (c)
- 180^{0} (d)

Which one of the following pairs of phenomena illustrates the particle aspect of wave-particle 56. duality?

- Compton effect and Bragg's law (a)
- Photoelectric effect and Compton effect. (b)
- Compton effect and Pauli's principle (c)
- Photoelectric effect and Bragg's law (d)

57. The duration of radar pulse is
$$10^{-6}s$$
. The uncertainty in its energy would be

- (a)
- Lux penetration through the specimen below a lower critical field $H^0_{\rm F}$ to 1.05×10^{-35} (b)
- 1.05×10^{-21} (c)
- 1.05×10^{-28} (d)

The energies of a particle in a box are given by 58.

- Continuous energy spectrum. (a)
- (b)
- (c)
- (d)

59.	Whice	ch of the following wave functions can be solut	ions to Schrodinger's equation for al	l values of
	(a)	$\Psi = A secx.$		
	(b)	$\Psi = A \tan x$		
	(c)	$\Psi = Ae^{x^2}$		
	(d)	$\Psi = Ae^{-x^2}$		
60.	Whic	h of the following operators is linear?		

- - $\widehat{C} u=u^2$ (a)
 - $\widehat{D}u = \frac{du}{dx}$ (b)
 - $Eu = \frac{1}{u}$ (c)
 - (d) None of these.
- 61. How many Bravais lattices can exist in nature?
 - (a)
 - (b) 14
 - (c) 32
 - (d) 23
- 62. Which of the following Bragg reflections are absent for an fcc crystal?
 - 100 (a)
 - (b) 200
 - (c) 220
 - (d) 111
- There is no flux penetration through the specimen below a lower critical field H_c then 63. superconductor is
 - (a) Type-I superconductor
 - (b) Type-II superconductor
 - (c) Fluxoid
 - (d) None of these.
- The particles π^0 , π^{\pm} are 64.
 - Spin $\frac{1}{2}$ Leptons. (a)
 - Spin $\frac{1}{2}$ Baryons. (b)
 - Spin -0 mesons. (c)
 - Spin -1 mesons. (d)

65.	Bary	on number conservation law means
	(a)	Baryons can only be created.
	(b)	Baryons cannot be created, only annihilated.
	(c)	Baryons can be created as well as annihilate.
	(d)	Baryons can neither be created nor annihilated, only transformed into each other.
66.	The I	Proton state is
	(a)	uud
	(b)	udd
	(c)	uds
	(d)	uss
67.	Nucl	ear fission was explained by
	(a)	Liquid drop model
	(b)	Shell model
	(c)	Collective model
	(d)	Radioactive model.
68.	As a decay	result of radioactive decay a $^{238}_{92}U$ the nucleus changed to a $^{234}_{91}Pa$ Nucleus. During this v , the particles emitted are
	(a)	One proton and two neutrons.
	(b)	One α – particle and one β – particle.
	(c)	Two β – particles and one neutron.
	(d)	Two β – particles and one proton.
69.	Duri	ng a negative $\beta - decay$
	(a)	An atomic electron is ejected.
	(b)	An electron that is already present within the nucleus is ejected.
	(c)	A neutron in the nucleus decays, emitting an electron.
	(d)	A part of the binding energy of nuclei is converted into an electron.
70.	Cyclo	otron used to accelerate
	(a)	Electron only
	(b)	positive ions only.
	(c)	Both positive ions and electrons.
	(d)	neutrons only.
